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We investigate the flow induced by a localized insoluble surfactant on a thin film. 
This problem is intended to model the behaviour of the lung’s thin-film lining after 
an aerosol droplet lands on its surface. The surfactant-induced surface-tension 
gradients drive convection (Marangoni convection) within the film, disrupting the 
film surface and causing the surfactant to spread. The surfactant may also spread on 
the film’s surface by surface diffusion without inducing convection. Gravity provides 
a restoring force that decreases film disturbances. 

Lubrication theory is employed to derive equations that describe the evolution of 
the film thickness and surfactant concentration. A nonlinear surface-tension equation 
of state describes the relationship between the surfactant concentration and the 
surface tension. Solutions of the evolution equations are found numerically using the 
method of lines and analytically under limiting cases of small and large surface 
diffusivity. The results elucidate the behaviour of the thin-filmlsurfactant system. 

We find that surface-tension-induced convection creates film disturbances that 
increase the film thickness near the surfactant’s leading edge, and thins the film in 
the central region. Surface diffusion causes more rapid spreading of the surfactant, 
and decreases the film disturbances. Gravity decreases the film disturbances by 
creating bi-directional flow in the form of a ring vortex. This behaviour may have 
implications for the delivery of medications or toxins by aerosol inhalation. 

1. Introduction 
The interiors of pulmonary airways and alveoli provide a large surface area, of the 

order of 100 m2, for the exchange of respiratory gases. This surface is coated with a 
thin liquid lining which serves as a barrier between the air and tissues not only for 
gas exchange, but also for any airborne particle or aerosol. When an aerosol droplet 
is inhaled, the transport of its contained materials ultimately depends on the droplet 
interaction with this liquid lining. Common medical applications include the delivery 
of aerosols for bronchodilator therapy to treat asthmatics. More recently antibiotics 
have been delivered in this manner, particularly for pulmonary infections such as are 
encountered in Acquired Immune Deficiency Syndrome (AIDS) (Conte, Hollander & 
Golden 1987). Not only can medications be delivered, but also environmental 
pollutants can ‘piggyback ’ onto normally innocuous aerosol droplets and reach 
sensitive regions of the lung (Goetz 1961). 

A relatively common disease in premature neonates is hyaline membrane disease, 
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whose major feature is an abnormally high surface tension of the lung’s liquid lining. 
This results from the immature lung’s inability to produce surfactants. One 
treatment for this disease is the delivery of exogenous surfactants into the 
respiratory tract (Enhorning et al. 1985; Merritt et al. 1986). Although a number of 
delivery methods are used, aerosol delivery has been attempted (Zelter et al. 1988), 
and may optimally deliver the surfactant to the distal bronchi. The dynamical 
interaction of the aerosol spray and the liquid lining are not known, though the 
treatment can be effective. 

Previous investigations of inhaled aerosols have focused on the deposition sites as 
a function of the aerosol’s aerodynamic radius (Schreck 1982). While the distribution 
of the aerosols within the bronchial tree provides some information concerning the 
delivery of substances, it gives no insight into the interaction of the aerosol droplet 
with the thin-film lining the lung. For instance, surface-active constituents could 
cause the aerosol to spread and induce motion within the thin film. Depending upon 
the spreading characteristics: (i) the rate of transport of a diffusible solute to the 
parenchyma may be modified from that ,of pure diffusion; (ii) the thickness and 
physical characteristics of the lining m be changed; (iii) the clearance of the 

lung such as compliance and its frequency dependence could change. 
To investigate the ‘working end of the aerosol delivery system, the aerosol will be 

modelled by the presence of a surface active contaminant on a thin film, which is 
intended to describe the situation that exists shortly after aerosol deposition onto the 
lung’s liquid lining. A fluid mechanical investigation of this situation should provide 
useful information towards understanding the droplet/lung-lining interaction. As a 
first step in understanding the transport of contaminant through the lung’s liquid 
lining, we hope to elucidate the film’s response to the deposition of an insoluble 
surface-active material. 

Existing analyses of contaminant spreading on deep liquid layers (DiPietro, Huh 
& Cox 1978; DiPietro & Cox 1980; Foda & Cox 1980; Dagan 1984) are not suitable 
for application to the lung’s thin liquid lining, principally because the substrate flow 
is high Reynolds number, which leads to boundary-layer formation beneath the 
contaminant, while in the thin-film case a low-Reynolds-number viscous flow exists. 
For this reason, the resistive force due to viscous drag of the thin-film substrate will 
be larger than that of the deep-liquid case, and the spreading rates should be slower. 
While these studies are not directly applicable for analysis in the lung, they provide 
a comprehensive overview of the interfacial mechanics associated with the spreading- 
droplet problem. A review of these analyses is provided by Borgas & Grotberg (1988). 

Studies of surface tension driven flows on thin films have been published by Yih 
(1968, 1969), Levich (1962), Joos & Pintens (1977)’ Adler & Sowerby (1970), Ahmad 
& Hansen (1972), Hussain, Fatima & Ahmad (1975), Dagan (1984) and Borgas & 
Grotberg (1988). All of these theories, with the exception of Adler & Sowerby (1970)’ 
investigate the problem of a moving planar front. Adler & Sowerby used the full 
three-dimensional geometry but investigated only flows induced by known 
variations of surface tension ; they did not relate these gradients to a surfactant. Yih 
(1968) studied the flow within a constraining channel, and the other studies listed 
above involved unconstrained spreading. In general, these studies assume monolayer 
dynamics, and use steady forms of the governing equations to investigate unsteady 
phenomena, which at best leads to results that are valid in a ‘ quasi-steady ’ limit. 

Within this paper, we present our investigation of the time-dependent flows 
created by the spreading of a surface-active contaminant on a thin film. In the 

droplet from the lung might be enhance a”y or retarded; (iv) overall properties of the 
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analysis of this problem the dimensional governing equations allowing surface- 
tension-gradient-driven flows, gravitational forcing and surface diffusivity of the 
surfactant are derived. Here the interfacial surface tension depends directly upon the 
surface concentration of the surfactant. The initial surface-tension distribution 
drives the fluid flow within the initially flat thin film, and thus determines the 
dynamics of the full mechanical system. This system consists of the film thickness, 
radial and vertical velocity fields and a time-dependent surfactant distribution. 

We formulate this problem and introduce the governing equations in $2. We derive 
evolution equations that describe the film thickness and surfactant concentration 
profiles in $3. These equations are numerically integrated, and the results are 
presented in $4. Sections 5 and 6 present our analyses of large and small PBclet- 
number flows, respectively, and in $7 we discuss the cumulative results of our 
numerical and analytical solutions. Finally, the conclusions are presented in $ 8, 
where we compare our results to those of other investigators and relate our findings 
to the delivery of medication by aerosol inhalation. 

2. Problem formulation 
A thin film of a Newtonian fluid with viscosity, p, and density, p, is bounded below 

by a horizontal rigid wall at z = 0 and above by the interface position z = H(r, t ) .  We 
model axisymmetric spreading in cylindrical coordinates ( r ,  8, z )  with respective fluid 
velocity components ( v ~ ,  0, vz) and pressure, P. The surface tension, ~(0, is a function 
of the surface concentration of insoluble surfactant, r ( r ,  t ) .  The problem is formulated 
in dimensionless variables whose relation to the dimensional variables (denoted by *) 
is given by 

r* = R,r, z* = H o z ,  CT* = gm+Scr, 

S r* = rmr, P* = -P ,  
HO J 

where R, is the initial radius of the spreading surfactant, Ha is the initial uniform 
thickness of the thin film, U is found by scaling the tangential-stress condition for a 
flat interface and the timescale is appropriate for convective events. urn is the surface 
tension of the interface when r* = rm, the micelle, or saturation monolayer 
surfactant concentration. We define the spreading parameter, S = go - urn where cro 
is the surface tension of the surfactant-free interface (r = 0). 

By defining the ratio of lengthscales as e = H,/Ro, the lubrication approximation 
is achieved by taking the limit E + O  in the governing equations, described below. 
Using the scales defined above, the r and z components of the Navier-Stokes 
equations, respectively, simplify to 

G = O(e2), --+- - O(e2,e2Re), --- 
ap a2v, - a. 
ar az2 az 

(2.2a, b )  

where Re = URo/v is the Reynolds number and G = pHi  g/S is the ratio of gravity to 
surface-tension gradient (Marangoni) forces. The product e2Re is assumed to be 
negligible for the thin-film flow. 
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The scaled continuity equation is given by 

and the boundary conditions of no-slip and no-penetration at the wall are 

v, = vz = 0 on z = 0. (2.4) 

In this model the surfactant is allowed to  diffuse along the interface with constant 
diffusivity, D,, or be convected along the surface of the thin film. The dimensional 
conservation equation for this surfactant is 

ar* 
- = D, V,*2r*-divs(u,* r*) + K * r * v * .  
at* 

Sequentially, left to right, the terms on the right-hand side of this equation represent 
the transport of surfactant by surface diffusion, the transport by convection, and an 
effective source-sink term that represents surface-concentration variations due to 
interfacial deformation. I n  this equation, u,* is the surface tangential velocity vector, 
V* is the surface velocity normal to the interface, div, is the surface divergence 
operator, Q,* is the surface Laplacian operator, and K* is the interfacial curvature. 
The dimensionless version of this equation, omitting terms of O(e), is given by, 

- ar = -{-+--}---[rvrT]+O(E) 1 a 2 r  iar 1 a a t  z = H ,  
at Pe ar2 r ar r a r  

where Pe = UR,/D, = SH,/,uD, is the surface PQclet number, the ratio of convection 
to surface diffusion for the surfactant. 

The non-dimensional form of the kinematic boundary condition is 

aH i3H 
- = vz-v,- on z = H ,  
at ar 

while the normal-stress jump condition a t  the interface takes the form 

a2H l a H  
+O(e2) on z = H ,  

where /3 = a,/S is the ratio of the minimum surface tension to the spreading 
parameter S ,  and e2/3 represents the ratio of capillary driving forces to the driving 
forces due to surface-tension gradients. The tangential-stress condition is the balance 
between viscous shear and the surface tension gradient 

avr aa 
az ar 
- = -+O(e) on x = H ,  (2.9) 

and provides the forcing for the convection. 

Sheludko (1967) and Borgas & Grotberg (1988) 
Finally, the surface-tension equation of state takes the same form used by 

40 = ( ~ + ~ ) ~ ~ + @ ( p ) ~ l - - 3 - p ,  (2.10) 

where S(p) = ((p+ l)/p):- 1.  
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3. The evolution equations 
The leading-order balance of the normal-stress equation (2.8) and z-component of 

the Navier-Stokes equation (2.2 b)  are used to calculate the leading-order pressure 
field, 

a2H i a ~  
P(r,z, t )  = G[H(r , t ) -z] -s2P 

This pressure field is due to both gravitational and capillary forces. Terms of order 
s 2 u  have been neglected, since the magnitude of r~ is a t  most unity. Terms of 0 ( s 2 P )  
are retained since some systems may exist in which this is O( 1) .  The retention of these 
terms preserves capillarity as a driving force. Additionally, terms of O(G)  allow 
gravitational forcing. 

The reduced form of the radial non-dimensional Navier-Stokes equation ( 2 . 2 ) ,  
leading-order tangential-stress balance from (2.9) and the no-slip condition a t  the 
bottom wall (2.4a), are then used to determine the radial velocity field, 

ap aa ar 
ar a f a r  

w,(r, z,  t )  = - [$zz -zH] + ---z. 

Continuity (2.3) and the no-penetration condition (2.4) are used to determine vz, 

(3.3) 

The surface-tension equation of state (2.10) is then substituted into the velocity field, 
equations (3.2) and (3.3). This transforms the dependency of the velocity components 
to functions of surfactant concentration and film thickness. These equations are then 
substituted into the kinematic boundary condition, equation (2.7), and the reduced 
form of the dimensionless conservation of surfactant equation (2.6) to develop the 
evolution equations for film thickness and surfactant concentrations. 

The resulting evolution equations are : 

and 

(3.4) 

(3.5) 

Since, from equation (3 .  l),  aP/ar has third-order spatial derivatives, the evolution 
equations are fourth-order partial differential equations. We shall neglect capillarity 
(e2/?-+ 0) so that the evolution equations (3 .4)  and (3.5) are reduced to second order 
in space. 

Initial conditions must be introduced if the evolution equations are to be solved. 
The distribution of surfactant after the initial deposition of an aerosol on a thin film 
is not known, so we assume a distribution that might have the correct form. 
Qualitatively, this surfactant distribution resembles a smoothed disk of surfactant. 
Additionally, the film is assumed to be flat initially. Specifically, these initial 
conditions are : 

(r < RZ), 

( r  > l . O ) ,  

H(r ,O)  = 1 ( r  2 0). (3.6b) 
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0 0.5 1 .o 1.5 
Dimensionless radial coordinate, r 

FIQURE 1.  Initial surfactant concentration distribution profiles. 0 ,  RZ = 0;  A, RZ = 0.35; 
0,  RZ = 0.7.  V, = 2.29 

This form of T(r,  0) places the initial non-zero surface-concentration gradients from 
RI < r < 1 ,  where RI is an adjustable parameter. r,,, is used to determine the 
volume of surfactant after RI has been selected. Figure 1 shows initial surfactant 
concentration profiles for values of RI = 0, 0.35 and 0.7 with the volume of 
surfactant fixed a t  

V, = 2n rT(r, 0) dr = 2.29. 1: 
Finally, the boundary conditions for these second-order equations are : 

(3.7a, b )  

and T = O , H = l  asr-too. (3.7c, d )  

To develop insight into the streamline patterns associated with this problem, the 
associated stream function was calculated. In this geometry, the stream function, @, 

- '@ = -rv7, - a@ = (3.8a, b)  
is defined as: 

a Z  ar '2, 

and the bottom wall is defined as a streamline, @ = 0 on z = 0. Here the stream 
function is scaled as 

The stream function is thus found to be 

$* = HoRo U@. (3.9) 

(3.10) 

In this equation, @ depends upon values of H and r, which must first be obtained 
by the integration of equations (3.4) and (3 .5) .  

4. Results 
Solutions of the coupled, nonlinear evolution equations (3.4) and (3 .5)  with initial 

conditions provided by equation (3.6a, b )  and boundary conditions listed in equations 
(3.7a-d) were found for a number of different values of time and dimensionless 
parameter groupings by the numerical Method of Lines. 
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Dimensionless radial coordinate, r 

I 

a 

Dimensionless radial coordinate, r 

FIQURE 2. Convergence test for the method of lines. 0, to1 = 0.1 ; V, to1 = 0.01 ; 0,  to1 = 0.001. 
G = 1, Pe = 10, = 5 ,  RI = 0.7, r,, = 1.0 and t = 0.5. 

To determine the convergence behaviour of the solution of the evolution equations 
subject to the imposed initial and boundary conditions, the tolerance of the method 
was selected as 0.1, 0.01 and 0.001. Our method was adaptive, modifying the 
temporal step size to satisfy the imposed tolerance criterion. Figure 2 displays the 
results of this calculation at t = 0.5, where the parameters chosen are G = 1.0, Pe = 
10, /3 = 5,  RI = 0.7 and r,, = 1. These values represent our basic parameter set, 
and were selected purely for illustrative purposes. Such a parameter grouping may 
not occur during an actual experiment, however this grouping allows all mechanisms 
to be represented. These figures show that a tolerance of 0.01 is sufficient for the 
calculation of consistent results for this parameter grouping. To ensure consistency, 
the tolerance was chosen as 0.001 for all remaining calculations. 

Figure 3 displays streamlines that characterize the flow patterns observed for all 
cases in which G is non-zero. Here the values of the dimensionless parameters are 
identical to those listed above, and these figures show the streamlines at three 
instants of time. Figure 3(a)  shows the film deformation after only a very short 
amount of time (t = 0.25) with streamlines indicating velocities that are uniformly 
radially outward. As time progresses (t = 0.75) a vortex evolves at the wall in the 
region of radially increasing film thickness, aH/ar > 0, as can be seen in figure 3 ( b ) .  
This vortex then engulfs the film behind the moving front, as shown in figure 3 ( c ) .  
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1 
Dimensionless radial coordinate, r 

1 
Dimensionless radial coordinate. I 

I 

1 
Dimensionless radial coordinate, r 

FIGURE 3. Streamlines representative of the Eulerian velocity field. (a) t = 0.25 ; ( b )  t = 0.75 ; 
( c )  t = 3.0. Pe = 10.0, G = 1.0, = 5, RI = 0.7 and r,, = 1.0. 
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0.50 I I 
0 1 2 3 4 

Dimensionless radial coordinate, r 

0 1 2 3 4 
Dimensionless radial coordinate, r 

FIGURE 4. Film thickness and surfactant concentration profiles for 0, Pe = 0.5; A, Pe = 1.0; 
0, Pe = 10.0; V, Pe = 100.0. G = 0, /? = 5.0, RZ = 0.7, r,,, = 1.0 and t = 0.5. 

As the magnitudes of the dimensionless parameters are varied with G > 0, this basic 
sequence of events remains the same. 

The influence of the PBclet number, Pe, is demonstrated by figure 4. Here the 
gravitational forcing is absent (G = 0), and Pe equals 0.5, 1.0, 10.0 and 100.0, so that 
the full range of diffusive and convective spreading phenomena can be compared. If 
these profiles are to represent behaviour that exists with film properties and t* fixed, 
an increase in Pe = SH,/pD,  must be accomplished by a decrease in D,. If interpreted 
in this manner, figure 4 (b )  indicates that an increase of Pe leads to reduced surfactant 
spreading rates, and a greater retention of the surfactant concentration distribution’s 
initially steep gradients. Furthermore, figure 4 ( a )  demonstrates that increasing the 
PBclet number leads to larger film disturbances, with a large leading-edge slope, and 
a thinning of the film in the region directly preceding the front. 

The gravitational parameter G ,  influences the behaviour of the film and surfactant 
as shown by figure 5(a ,  b ) .  Here r and H profiles are investigated for values of G 
equal to 0.1, 1 and 10. Figure 5 demonstrates that an increase in G leads to 
diminished film-thickness gradients, an increase of surfactant concentration near the 
centre of the droplet, and a decrease of the droplet’s radius. As p is varied with other 
parameters fixed, the relationship between surfactant concentration and surface 
tension is modified, as indicated by the surface tension equation of state (2.10). 
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0.50 
0 1 2 

Dimensionless radial coordinate, r 

Dimensionless radial coordinate, r 

FIGURE 5. Film thickness and surfactant concentration profiles for 0,  G = 0.1 ; A, G = 1.0; 
0,  G = 10.0. Pe = 10.0, = 5.0, RI = 0.7, r,,, = 1.0 and t = 0.5. 

Figure 6 ( a )  shows that the film responds to a decrease in /3 by increasing film 
disturbances near the leading edge and decreasing disturbances near the centre of the 
droplet. Figure 6 ( b )  demonstrates that as /3 decreases more surfactant remains near 
the droplet centre. 

The dependency of the film thickness and surfactant concentration profiles on the 
parameter RI is investigated by variation of RI with the total volume of surfactant, 
V,, held constant 1 

V, = 2% [ rcnitdr = 2.29. 
J o  

In this figure the values of RI are, RI = 0, 0.35 and 0.7. These initial concentration 
profiles are identical to those shown in figure 1. Figure 7 (a) shows the film-thickness 
profiles at a fixed value oft. These profiles are remarkably similar near the leading 
edge, and the only major difference occurs in the central region of the droplet, where 
small values of RI lead to increased thinning. As RI decreases, the concentration of 
surfactant at the centreline increases, while only a minor modification of r is 
apparent near the leading edge. 

Finally, we investigate the droplet radius as a function of time for different fixed 
values of Pe and G .  The droplet radius, T ~ ,  is calculated by the relationship 

0.95Vs = 2% I" r r ( r ,  1 )  dr. (4.2) 
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Dimensionless radial coordinate, r 

0.6 
r, 
6 

a c 0.4 

'a 1 8  
.a g 
3 ;  
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c o  
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0 1 2 3 
Dimensionless radial coordinate, r 

FIGURE 6. Film thickness and surfactant concentration profiles for 0,  /? = 0.1 ; A, /3 = 1 .O ; 
0,  /? = 10.0. Pe = 10.0, G = 1.0, RI = 0.7, r,,, = 1.0 and t = 0.5. 

Figure 8 shows the droplet radius as a function of time for values of the Pe = 1 ,  10 
and 100 with G = 0 and 1. This figure demonstrates increased spreading rates as Pe 
decreases. Additionally, as G increases for large Pe, the spreading rate decreases. 

5. Large P6clet number spreading 
As demonstrated by figure 4(a ) ,  when Pe = 100 the leading edge of the film- 

thickness profile is very steep and resembles a moving front. This behaviour may be 
understood by examining the limiting case of zero surface diffusivity and 
gravitational forcing (G = 0, l /Pe+O). Equation (3.2) evaluated a t  z = H shows that 
in this limit the radial velocity field is linear, with the maximum velocity a t  the 
surface, 

aa ar 
ar ar 

wr(r,H, t )  = vu,(r, t )  = ---H. 

In the limit of 1/Pe + 0, the surfactant is transported by convection only, so a well- 
demarcated concentration front may exist. Define the position of this front as r = 
rf. Directly in front of the leading edge (T  = r:) no surfactant exists, so r = W / a r  = 
0, and the magnitude of the radial surface velocity is w,(r:, t )  = = 0. This leaves the 
undisturbed height H+ = 1. Directly behind the concentration front ( r  = r;) 
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1.25 I 1 

0.50 I 1 
0 1 2 3 

Dimensionless radial coordinate. r 

0 1 2 3 
Dimensionless radial coordinate, r 

FIQURE 7. Film thickness and surfactant distribution profiles. 0, RZ = 0.7; A, RZ = 0.35; 
0, RZ = 0 with V, = 2.29. Pe = 10.0, G = 1.0, = 5.0 and t = 0.5. 

0 0.5 1 .o 1.5 2.0 
Dimensionless time, I 

FIQURE 8. Droplet diameter, rD, V.S. time for 0,  Pe = 1.0; A, Pe = 10.0; 0, Pe = 100 with 
_--- , G = 0;  ....., G = 1. /I = 5.0, RI = 0.7 and r,,, = 1.0. 
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surfactant exists, so r + 0 and X / a r  + 0. The radial surface velocity there is vUs(r;, 
t) = v;. This shock discontinuity is characteristic of nonlinear kinematic waves 
(Whitham 1974). Accordingly, the shock speed is given in terms of the jump in 
volume flow rate divided by the jump in cross-sectional area of the film 

dr, - 2nrt(9; H- - %+ H+) - - 2 s  - v; H- - 
dt 2mf (H- - H+) 2 ( H -  - H+) 

Then, since the speed of the shock, dr,/dt, must be equal to the surface speed, US, 
equation (5.2) shows that 

H-  = 2. (5.3) 

This result is in agreement with the results of Borgas & Grotberg (1988) in their 
limit of zero diffusion. A consequence of the flow field is that the average thickness 
of the surfactant-covered film equals that of the undisturbed film, since the fluid 
ahead of the leading edge is not disturbed from its initially flat profile. Since the 
leading-edge film thickness is twice the undisturbed film thickness, the region behind 
the advancing front must have a magnitude less than that of the undisturbed film, 
which leads to the observed thinning region behind the leading edge. This result is 
in agreement with the leading-edge behaviour of our film-thickness profiles in the 
limit of large Pe and small G, figure 4 (a), where a moving front exists near the leading 
edge, and the slope of the surfactant concentration near r = rt is non-zero. In  
addition, this figure shows localized thinning occurring at  a finite, non-zero, value of 
r .  If the thinning is extreme, film rupture may occur. The solution found above for 
P e  + 00 is the ' outer ' solution. To model the leading-edge ' inner ' solution, the radial 
coordinate should be re-scaled as r^ = rPei in the evolution equations to preserve the 
highest-order spatial derivatives in (3.5). This shows that shock boundary layer has 
thickness of order R,/Pea. If the modelling were to include the effects of capillarity, 
the region of infinite curvature should be rounded, modifying the shock structure. 

6. Small PBclet number spreading 
Here we investigate the spreading of a surface-active contaminant under 

conditions in which transport by surface diffusion dominates the transport due to 
surface-tension-gradient-induced convection. Two timescales exist in this problem, 
the diffusion timescale, T,, and the convection timescale, T,, defined as 

Clearly, in the limit Pe+O,  T, T,, so most activity will occur on the diffusion 
timescale. We will thus approach this problem assuming that a boundary layer in 
time exists. The inner and outer dependent variables will be denoted Hi(r, 7), P ( r ,  7) 
and Ho(r ,  t ) ,  r O ( r ,  t ) ,  respectively, where the inner and outer timescales, 7 and t, are 
based upon the diffusion and convection timescales respectively : 

r = t*/T,, t = t*/Tc = Per .  (6.2) 
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6.1. Inner solution 

The evolution equations ((3.4) and (3.5)), expressed in the inner variables are 

with P(r,  x ,  r )  defined by ( 3 . 1 ) .  Assuming Pe < 1, we expand the dependent variables 
r' and Hi in the regular expansions 

P ( r ,  r )  = Fi(r ,  7 )  +PeH',(r, r )  + O(Pe2), ( 6 . 5 ~ )  

Ti(r, r )  = r ; ( r ,  r )  + PeTi(r, r )  + O(Pe2).  (6.5b) 

These series representations of P and Ti are substituted into the governing 
equations, and linear evolution equations are derived for each order in Pe. The O( 1) 
evolution equations are : 

a l a  a . 0- a l p  - 0, hlr; = [----[r-]]r; = 0. 
a7 ar r a r  ar 

(6.6u, b)  

The solution of ( 6 . 6 ~ )  and initial condition (3.6b) is Hk(r,r) = 1, so the film retains 
its flat profile to O ( 1 ) .  The solution of equation (6.6b) is found by solving the Green 
function problem, 

(6.7) 

where G ( r , r ; q , l )  is the Green function and S is the Dirac delta function. The 
constraints on G are G = 0 for r < f, and limr+m G = 0. G(r, 7 ;  q, i) is found by Laplace 

L,  G(r ,  r ; q , t^, = S(r - q ) S(7 - t ) / r ,  

transform to be: 

(6.8) 
G(r ,  r ; q ,  l) = ;. 1 exp {-}I, - (7' + r 2 )  { -} v H ( r  - l), 

2(r - t )  4(7 - t )  2(7 - t )  

where I ,  is the modified Bessel function, and H is the Heaviside step function. The 
solution of (6.66) is thus 

rb(r, 7) = J: r;(q,o) ~ ( r ,  7; q ,  0) q dy. (6.9) 

The O(Pe) evolution equations are as follows:) 

and 

( 6 . 1 0 ~ )  

(6.10b) 

where we have assumed that e'P = o(Pe) and G = o(Pe) in order to delay the 
appearance of capillarity and gravity to next order. The O(Pe) correction to the film 
thickness, Hi(r, r ) ,  is found by integrating : 

H i ( r ,  r )  = l g l ( r ,  6 dt"+ H i ( r ,  0 ) ,  

where g l ( r ,  l) is the right-hand side of equation ( 6 . 1 0 ~ ) .  

(6.11) 
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6.2. Outer solution 

The outer solution is found from evolution equations (3.4) and (3.5) with the regular 
expansions of the outer dependent variables 

Ho(r,  t )  = H,"(r, t )  +PeHi(r, t )  + O(Pe2),  ( 6 . 1 2 ~ )  

I ' O ( r ,  t )  = f ,"(r, t )  + P e r ; ( r ,  t )  + O(Pe2). (6.126) and 

The O( 1) evolution equations for the outer variables are : 

The solutions of equations (6.13a, b)  with boundary conditions (3.7a-d) are f ; ( r ,  
t )  = 0 and H,"(r, t )  = Co(r).  Matching the inner and outer O(1) solution for film 
thickness, we find C,(r) = limr+03 IP,(r, 7 )  = 1. 

The O(Pe) evolution equations are : 

whose solutions, after substitution of the boundary conditions (3.7 a-d ) ,  are T;(r,  
t )  = 0 and H;(r,t) = Cl(r ) .  Matching the inner and outer O(1) solutions, we find 

C,(r) = limHi(r, t )  = limHi(r, 7). . (6.15) 
t+o r+m 

6.3. Uniform expansion 
The uniform expansions, &,, H,,  4 and H ,  are found by adding the inner and outer 
expansions, then subtracting their common part. These solutions are : 

&(r,7)  = f i ( r , 7 ) ,  H0(r ,7 )  = P0(r ,7)  = 1, (6.16a, b )  

w, 7 )  = fib, 7)s HIP, 7 )  = m r ,  7). (6.16c, d )  

So, the uniform expansions are equal to the inner expansions, and all activity occurs 
on the diffusion timescale when Pe $ 1. 

Numerical solutions of &(r, 7 )  and Hl(r ,  7), equations (6.9) and (6.11), were found 
using a Gauss-Konrad method for spatial integration and Rung-Kutta-Verner 
method for the temporal integration with initial conditions specified by equation 
(3.6a, b ) .  Figure 9 (a )  compares H ,  to the numerical solution of H from (3.4) and (3.5), 
plotted in the form ( H - l ) / P e .  The amplitude of the waveform H ,  is larger than 
( H - l ) / P e ,  a difference that relates to the O(Pe2) correction terms implicit in the 
( H -  1 ) / P e  form. Apparently, the O(Pe2) interaction of diffusion with convection 
decreases the convective driving forces and leads to the smaller film disturbances. 
Likewise, figure 9(b) compares & with the numerical solution of r from (3.4) and 
(3.5). This figure demonstrates that convection (which enters a t  O(Pe) )  increases the 
spreading rate, leading to a smaller surfactant concentration at  r = 0. 

Both figures 9(a )  and 9(b) demonstrate that the solution of the small PBclet 
number analysis correlates well with the numerical solution to (3.4) and (3.5). In 
fact, the comparison with the profile representing Pe = 1 is remarkably good, 
since formally the perturbation method employed should not be successful when 
Pe z O(1). 
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FIQURE 9. (a) Comparison of V, the O(Pe) film disturbance profile, H, ,  with ( H -  1)/Pe found by 
numerical integration of equations (3.4) and (3.5). 0, Pe = 0.1; A, Pe = 0.5; 0,  Pe = 1.0. G = 0, 
B = 5.0, r',, = 1.0, RI = 0.7 and 7 = 0.1. ( b )  Comparison of V, the O(1) surfactant concentration 
profile, r,, calculated using small Pe analysis, with r found by numerical integration of equations 
(3.4)and(3.5). O , P e = O . l ; A , P e = 0 . 5 ;  ~ , P e = 1 . 0 . G = 0 , ~ = 5 . 0 , ~ , , , = l . O , R I = 0 . 7 a n d  
7 = 0.1. 

7. Discussion 
The predicted behaviour of the surfactantlthin-film system may be understood by 

examining the interrelationships of the mechanisms included in our model. The 
mechanisms of surface diffusion and surface-tension gradients each arise from a non- 
uniform distribution of surfactant along the surface of the thin film. The diffusive 
process distributes the surfactant and decreases concentration gradients without 
disturbing the underlying film. In  contrast, surface tension gradients are coupled to 
the thin film by the tangential-stress condition and thus drive convection within the 
thin film. Non-uniform convection leads to disturbances of the initially flat interface, 
which, in turn, influences the surfactant flow by modifying the viscous retardation. 
Finally, hydrostatic pressure gradients induce flows that restore the disturbed film 
to a uniform film thickness. The nonlinear coupling of these mechanisms leads to the 
behaviour observed in this study. 

Figure 3 (a-c) describes the time-dependent Eulerian flow field. The flow is initially 
outward, as indicated by the streamlines in figure 3 (a) .  Near the juncture between 
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FIQVRE 10. Flow-reversal onset time vs. Q for 0, Pe = 0.1; A, Pe = 1.0; 0, Pe = 10.0; 
V, Pe = 100.0. B = 5.0, RI = 0.7 and r,,, = 1.0. 

the surfactant-covered and clean film, the fluid goes through a rapid transition from 
a large to a small radial velocity, since surface-tension gradients are small beyond 
this leading edge. This flow field leads to expulsion of fluid from regions of large 
surface-tension gradients, causing the film to thin. Fluid expelled from regions of 
large surface- tension gradients is retained near the surfactant's leading edge which 
leads to a build-up of fluid in that region. This behaviour is most evident in large 
PBclet number flows, as described in $5.  

In regions where aH/& > 0, the hydrostatic-pressure gradients and surface- 
tension gradients are in opposition. With time the hydrostatic forces increase, since 
film disturbances grow, and the surface-tension gradients diminish due to surfactant 
dilution and decreased concentration gradients. Eventually flow reversal results 
when the hydrostatic force overwhelms the surface-tension-gradient-induced flow 
near the bottom wall, which occurs when GH aH/ar > (acr/ar) @I'/ar). Streamlines 
describe the flow reversal in the form of a ring vortex, demonstrated by figure 3 (b ) .  
As the surfactant continues to spread, the surface-tension-driven convection 
diminishes, and the backflow region grows so that the ring vortex engulfs the entire 
film behind the leading edge, as shown in figure 3 ( c ) .  This flow pattern draws fluid 
from thick regions of the film and moves it to the thinner regions, causing a 
relaxation of disturbances towards a film of uniform thickness. 

Figure 10 shows that for all values of Pe investigated, increasing G leads to an 
earlier flow reversal, since the gravitational forcing is enhanced. However, increasing 
Pe from 10 to 100 leads to a delay of flow reversal for G < 0.75, while for G > 0.75 
the flow reversal occurs earlier. By increasing Pe (by decreasing D,) the surfactant 
concentration gradients dissipate more slowly and aH/ar becomes larger, which 
enhan.ces hydrostatic-pressure gradients, as shown by figure 4(a, b) .  So, an increase 
in Pe leads to both an increase in the surface-tension and gravitational forcing. For 
G < 0.75, an increase of Pe from 10 to 100 enhances the surface-tension driving force 
to a greater degree than the gravitational driving force, so flow reversal is delayed. 
In contrast, increasing Pe from 10 to 100 when G > 0.75 increases gravitational 
forcing more than the surface-tension gradient forcing, leading to earlier flow 
reversal. 

Figure 5 (b )  demonstrates that hydrostatic-pressure induced backflow decreases 
surfactant spreading rates. Modification of the flow field increases the viscous 
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FIGURE 11. (a)  Surface tension equation of state, equation (2.10). 0, B = 0.1; A, B = 1.0; 0, B = 
10. ( b )  Initial surface tension distribution, equation (3.60). 0,  B = 0.1; A, B = 1.0; 0,  B = 10.0. 
RI = 0.7 and I',',,, = 1.0. 

retardation of the surface-film, and thus leads to a slowing of the convective 
transport of surfactant. 

A small value of p implies that the surfactant is highly surface-active and also 
leads to a nonlinear equation of state, as shown by figure 11 (a). When 8 is small, 
surface-tension gradients are a function of surface-concentration gradients and 
inversely related to the surface concentration. When /3 is large, the surface-tension 
gradients depend upon concentration gradients alone. This is shown in figure 11 (b ) ,  
the initial surface-tension distribution, which shows that as p decreases the 
magnitude of the surface-tension gradient decreases near the centre of the droplet, 
where concentrations are large, and increases near the edge of the droplet where 
concentrations are small. 

It would be difficult to modify p while leaving all other parameters fixed. 
Nevertheless, such an experiment would demonstrate the influence of the nonlinear 
surface-tension equation of state (3.9a, b) on the spreading behaviour. Our 
predictions of such an experiment are shown in figure 6(a,  b), where profiles are 
compared at  constant t ,  which may correspond to different values oft*. Owing to the 
mechanism listed above, small /? increases disturbances near the edge of the droplet, 
where concentrations are small, and decreases disturbances near the centre, where 
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FIGURE 12. Film thickness and surfactant distribution profiles showing behaviour induced by 
modification of the surface activity, S.  p =  ( v O / ~ ) - - l  = :  0 ,  0.25; A, 1.0; 0, 5.0; V, 10.0. 
Pe(P+ 1) = 60, G / ( B +  1 )  = 6.0, RI = 0.7, r,,, = 1.0 and t(p+ 1) = 3.0. 

concentrations are large. Centreline concentrations increase as /3 decreases, since the 
inverse relationship of surface concentration to surface-tension gradients decreases 
the surfactant convection in that region. Droplet radius appears to be largely 
independent of i9 over the range of j9 investigated. 

The effect of the parameter RI is demonstrated in figure 7 ( a ,  b) .  Essentially, RI 
locates the most important feature of the initial surfactant concentration profile - 
the position of the non-zero concentration gradient. As RI decreases, this gradient 
moves radially inward, inducing flows that create film deformations near the droplet 
centre. By increasing RI, the surface-tension gradients become localized near the 
leading edge. Since the imposed surface-tension difference must then occur over a 
smaller distance, the local concentration gradient increases, leading to larger 
convective forcing. The increase of RI is accompanied by localized film thinning at  
a finite, non-zero, radial position. If the thinning is extreme, the film may rupture, 
leading to the formation of a dry ring. 

Figure 7 ( b )  demonstrates that after a short time the surfactant distribution is 
largely independent of RI, especially near the leading edge. In fact, the leading-edge 
position is nearly identical for all cases investigated. Since RI is not easily defined in 
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an experiment, this result is encouraging, as i t  shows that the predictions of droplet 
radius made by this model are fairly robust as a function of RI. 

Figure 8 shows the droplet radius as a function of time for values of Pe = 1, 10 and 
100 with G = 0 and 1 .  The spreading rate decreases with time in all cases, owing 
primarily to the dilution of the driving forces by convection and diffusion. As the 
PBclet number increases the spreading rate decreases, since the diffusive contribution 
is diminished as P e  increases, given our choice of timescale. Hydrostatic pressures 
modify the flow field and retard the distribution of surfactant, which is evident by 
the smaller droplet radius as G increases. The gravitational parameter does not 
strongly influence the small Pe  results, where largely diffusive spreading occurs, as 
the film profile is not greatly disturbed and thus hydrostatic pressures remain small. 

Practically, one would modify aerosol spreading behaviour by changing S ,  the 
surface-activity of the droplet. To investigate the influence of S we examine film 
and surfactant profiles with p = co /S -  1 = 0.25, 1.0, 5.0 and 10.0 while fixing 
Pe(p+ 1)  = 60, G/(p+ 1 )  = 6.0 and t(P+ 1 )  = 3.0. By setting the parameter 
magnitudes in this manner, the forcing is modified consistent with changes in S .  
Additionally, by fixing the non-dimensional time to the paramekr /3, the profiles 
may be interpreted as occurring at fixed t*.  When p = 5.0, the profiles represent our 
basic parameter set. Figure 12 demonstrates that  a decrease in P increases film 
disturbances and the spreading rate. As p decreases, the surfactant becomes more 
surface-active, leading to an increase in convection which is characterized by an 
increase of Pe and a decrease of G. However, small p implies a nonlinear equation of 
state, which, on its own, would increase film disturbances near the leading edge and 
decrease disturbances near the droplet centre. Since this behaviour is not observed 
under the conditions of figure 12(a), the modification of the film is dominated by an 
overall increase of convective forcing, creating larger film disturbances and enhanced 
spreading rates. 

8. Conclusions 
We modelled an inhaled aerosol on the lung's liquid lining as a localized insoluble 

surfactant on a thin film, which is allowed to spread owing to  surface-tension 
gradients and surface diffusion. Evolution equations describing the surfactant 
concentration and film thickness are derived, with solutions found numerically. The 
solutions demonstrate the relationships of surface- tension gradients, surface diffusion 
and gravity on the behaviour of a surfactant spreading on a thin viscous film. 
Analytical solutions found for cases of small and large PQclet numbers are in good 
agreement with our numerical results. 

Previous investigators of spreading droplets have attempted to determine a simple 
relationship for the droplet radius as a function of time, typically expressed as rD = 
At". Ahmad & Hansen (1972) and Borgas & Grotberg (1988) predict a power-law 
relationship in which a = 0.5. Simple experiments by Ahmad & Hansen (1972) and 
Joos & Pintens (1977) confirmed this relationship. To compare our results to those 
of the authors listed above, the local spreading rate, k ( t )  = (t/r,)dr,/dt, was 
determined by a central-difference method from the results plotted in figure 8. The 
power-law relationship is consistent with k ( t )  = a. As can be seen from figure 13, k( t )  
determined from this study is only marginally time-dependent. For convection- 
driven spreading (Pe = 100 and G = O),  the spreading droplet simulation provides 
values of k ( t )  z 0.25. When the value of the gravitational parameter G increases to 
G = 1, the spreading rate decreases to k ( t )  x 0.20. As the PBclet number decreases to 
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FIGURE 13. Spreading power, k ( t )  = (t/R,) (dR,/dt), ws. time for 0, Pe = 1.0; A, Pe = 10.0; 
0, Pe = 100 with ----, G = 0 ;  . . . . . , G = 1 . /9 = 5.0, RZ = 0.7 and r,,, = 1.0. 

unity, the value of k ( t )  z 0.5, in agreement with the results of Ahmad & Hansen 
(1972), Joos & Pintens (1977) and Borgas & Grotberg (1988). However, only the 
analysis of Borgas & Grotberg (1988) includes surface diffusivity, and their 
predictions do not show a dependency of k ( t )  on D,. For this reason, it is fortuitous 
that their predictions of k ( t )  compare to predictions based upon the spreading of a 
droplet in which convection and diffusion are of equivalent magnitude. 

Several reasons might explain the poor correlation of the previous investigators' 
predictions with those of this study. Primarily, these analyses apply to a two- 
dimensional spreading planar front. The dilution of surfactant (and hence the 
forcing) is different in the case of a planar front from that of the axisymmetric 
spreading in cylindrical coordinates that we investigate. Also, their predictions rely 
on a quasi-steady analysis, while the behaviour is clearly time-dependent. 
Experimental measurements of surfactant spreading by Joos & Pintens (1977) and 
Ahmad & Hansen (1972) relied on surface marking the fluid with talc. This method 
may not be accurate due to the retarding effect of the talc as well as the talc's surface 
activity. 

The intent of this study has been to develop an understanding of the mechanisms 
by which an inhaled aerosol may interact with the thin-film lining of the lung. We 
have seen from this theoretical analysis that a wide range of film behaviour is 
possible depending upon the magnitudes of the dimensionless parameters. Within 
the lung, the film lining has a range of thicknesses of 1-10 pm (Weibel 1963). With 
a film thickness of this magnitude, there will be essentially no effect due to gravity, 
since G + O( 1) .  When gravity fails to create a restoring force, other mechanisms such 
as capillarity may become important, so film relaxation is still possible. The form of 
this relaxation cannot be predicted from our analysis. 

Depending upon the liquid-lining thickness, viscosity, surface tension and aerosol 
surface activity, inhaled aerosols may spread with characteristic PBclet numbers that 
are either small, large or O( 1). If Pe is much smaller than one, the aerosol will spread 
on the lung's liquid lining primarily by diffusion, and film disturbances will be small. 
If Pe is O ( l ) ,  an interaction of surface diffusion and convection will exist. In this 
regime, appreciable film disturbances will occur, and the relative magnitudes of 
diffusion and convection will influence the response of the thin film to the surfactant. 
Convection within the film could effect the transport of soluble substances from the 
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droplet to the lung’s parenchyma. For Pe % O ( l ) ,  large disturbances will be created 
and film rupture might occur, which may influence the lung’s mechanical 
characteristics in the region of aerosol deposition. 
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